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Introduction 
 

Earthquake location is one of most important tasks in practical seismology and most 
seismologists have been involved in this tasks from time to time. The intention with this 
document is describe the most common methods without going into the mathematical details, 
which has been described in numerous text books, and to give some practical advice on 
earthquake location. 

The earthquake location is defined by the earthquake hypocenter (x0,y0,z0) and the 
origin time t0. The hypocenter is the physical  location, usually longitude(X0), latitude(y0) and 
depth below the surface (z0,km). The epicenter is (x0,y0). For simplicity, the hypocenter will 
be labeled x0, y0, z0 with the understanding that it can be either geographical or Cartesian 
coordinates. The origin time is the time of occurrence of the earthquake. When the earthquake 
is large, the physical dimension can be several hundred kilometers and the hypocenter can in 
principle be located anywhere on the rupture surface. Since the hypocenter and origin time are 
determined by  arrival times of seismic phases initiated by the first rupture, the computed 
location will correspond to the point where the rupture initiated and the origin time to the time 
of the initial rupture. This is also true using any P or S-phases since the rupture velocity is 
smaller than the S-wave velocity so that P or S-wave  energy emitted from the end of a long 
rupture will always arrive later than energy radiated from the beginning of the rupture. 
Standard earthquake catalogs (such as from the International Seismological Center, ISC ) 
report location based  primarily on arrival times of high frequency P-waves. This location can 
be quite different from the centroid time and location obtained by moment tensor inversion of 
long period waves. The centroid location represent the average time and location for the entire 
event. 
 
 
Single station location 
 
 In general,  epicenters are determined using many arrival times from different seismic  
stations and phases. However, it is also possible to locate an earthquake using a single 3-
component station. Since the P-waves are vertically and radially polarized, the vector of P-
wave motion can be used to calculate azimuth to the epicenter, see Figure 1. The radial 
component  of P will be recorded on the 2 horizontal seismometers and the ratio of the 
amplitudes on the horizontal components can be used to calculate the azimuth of arrival.  
There is then an ambiguity of 180° since the first polarity can be up or down so the polarity 
must also be used in order to get the correct azimuth. If the first motion (on vertical 
component) of the P is upward, the radial component of P is directed away from the 
hypocenter, and opposite if P-polarity is negative. The amplitude of the Z-component can, 
together with the amplitude on the horizontal components, also be used to calculate the angle 
on incidence. 
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Figure 1 
 
Left: Method of determining the azimuth to the source using the amplitudes of the  P-wave as 
recorded on the 3 components. Right: The method can also be used to get the arrival azimuth 
of surface waves. The Raleigh waves corresponding to the P-waves are shown. Note the 90° 
phase shift between Z and the horizontal components.. (From Båth, 1979). 

 
 
 

 With modern high frequency data it might be difficult to manually read the 
amplitudes of the first break or sometimes the first P-swings are emergent. Since the 
amplitude ratio between the components should remain constant not only for the first swing of 
the P-phase but also for the following oscillations of the same phase, we can, with digital data, 
use the predicted coherence method (Roberts et al, 1989) to automatically calculate azimuth 
as well as the angle of incidence. Since this is much more reliable and faster than using the 
manually readings of the first amplitudes,  calculation of azimuth has again become a routine 
practice. As we shall see later, azimuth observations are useful in restricting epicenter 
locations. 

 
 With a single station we have now the direction to the seismic source. The distance 

can be obtained from the difference in arrival time of two phases, usually P and S. If  we 
assume a constant velocity, and origin time  t0, the P and S-arrival times can then be written as  
 
 tp = t0  + ∆/vp                                  ts = t0  + ∆/vp     (1)             

 
where tp and ts are the P and S-arrival times respectively, vp and vs are the P and S-velocities 
respectively and ∆ is the distance. By eliminating  t0  from (1), the distance can be calculated 
as 
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For a Poisson solid, we can assume that vs = vp/ 3 . As a rule of thumb ∆= (ts – tp) * 9.0 for 
many local models. This corresponds to an average P-velocity of 6.6 km/sec.  For larger 
distances, travel time tables can be used to calculate the distance. With both azimuth and 
distance, the epicenter can be obtained by measuring off the distance along the azimuth of 
approach. Finally, knowing the distance, we can calculate the P-travel time and thereby get 
the origin time using the P-arrival time. 
 
 
Multiple station location 
  

When at least 3 stations are available, a simple manual location can be made from 
drawing circles ( the circle method) with the center at the station locations and the radius 
equal to the epicentral distance calculated from the S-P-times (Figure 2). 
 
Figure 2   
Location by the circle method. The stations are located in S1, S2 and S3. The epicenter is 
found within the black area where the circles cross. 

 

 
These circles will rarely cross in one point which indicates errors in the observations 

and/or that we have wrongly assumed a surface focus. Methods exist (e.g. Båth, 1979) to deal 
with this depth problem, however since it is rarely used, it will not be discussed here. 

With several stations available from a local earthquake, the origin time can be 
determined by a very simple graphical technique called a Wadati diagram (Figure 3). Using 
equation (1) and eliminating ∆, the S  - P travel time can be calculated as  
 

ts – tp = (vp/vs – 1) * (tp  -  t0)         (3) 
 
The S-P times are plotted against the absolute P-time. Since ts – tp goes to zero at the 
hypocenter, a straight line fit on the Wadati diagram gives the origin time at the intercept with 
the P-arrival axis and from the slope of the curve, we get vp/vs.  Note that is thus possible to 
get a determination of both the origin time and vp/vs  without any prior knowledge of the 
crustal structure, the only assumption is the vp/vs  is constant and that the P and S-phases are 
of the same type like Pg and Sg or Pn and Sn. Independent determination of these parameters 
can be very useful when using other methods of earthquake location. 
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Figure 3 
 
An example of a Wadati diagram. The intercept on the x-axis gives the origin time. The slope 
of the line is 0.72 so the vp/vs  ratio is 1.72. Note that the points do not exactly fit the line 
indicating model or observation errors. (From Lay and Wallace, 1995). 

 
 
 The Wadati diagram can  be very useful in making independent checks of the observed 
arrival times. Any points not fitting the linear relationship might be badly identified, either by 
not being of the same type or misread. 
  

 Manual location methods  provide insight into the location problems, however in 
practice we use computer methods. In the following, the most common ways of  calculating 
hypocenter and origin time by computer will be discussed. 
 
 
The calculated arrival time ti

c
 at station i can be written as 

 
ti

c = T(xi,yi,,zi,x0,y0,z0) + t0                          (4) 
 

where T is the travel time as a function of the location of the station location (xi,yi,zi)  and the 
hypocenter location. This equation has 4 unknowns, so in principle 4 arrival time observations 
from at least 3 stations are needed in order to determine the hypocenter and origin time. If we 
have n observations, there will be n equations of the above type and  the system is 
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overdetermined and has to be solved  in such a way that the misfit or residual ri at each station 
is minimized. ri is defined as the difference between the observed and calculated travel times 
 

ri = ti
o- tci              (5) 

 
Thus the problem seems quite simple in principle. However, since the travel time function T is 
a nonlinear function of the model parameters, it is not possible to solve (4) with any analytical 
methods. So even though  T can be quite simple to calculate, particularly when using a 1D 
earth model or travel time tables, the non linearity of T greatly complicates the task of 
inverting for the best hypocentral parameters. The non linearity is evident even in a simple 2D 
location where the travel time ti from the point (x,y) to a station (xi,yi) can be calculated as 
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where v is the velocity. It is obvious that ti does not scale linearly with either x and y so it is 
not possible to use any set of linear equations to solve the problem and standard linear 
methods cannot be used.  This means that given a set of arrival times, there is no simple way 
of finding the best solution.  In the following, some of the methods of solving this problem 
will be discussed. 
 
 
Grid search 
 

Since it is so simple to calculate the travel times to any point in the model, given a lot 
of computer power, a very simple method is  to perform a grid search over all possible 
locations and origin times and compute the arrival time at each station. The hypocentral 
location and origin time would then be the point with the best agreement between the 
observed and calculated times. This means that some measure of best agreement is needed, 
particularly if many observations are used. The most common approach is least squares which 
is to find the minimum of the sum of the squared residuals e from the n observations: 
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The root mean squared residual RMS, is defined as ne / . RMS  is given in almost all 
location programs and commonly used a guide to location accuracy. If the residuals are of 
similar size, the RMS gives the approximate average residual. As will be seen later, RMS only 
gives an indication of the fit of the data, and a low RMS does not automatically mean an 
accurate hypocenter determination. 

The average squared residual e/n is called the variance of the data. Formally, n should 
here be the number of degrees of freedom, ndf, which is the number of observations – number 
of parameters in fit ( here 4). Since n usually is large, it can be considered equal to number of 
degrees of freedom. This also means that RMS2  is approximately the same as the variance. 

The least squares approach is the most common measure of misfit since it  leads to 
simple forms of the equations in the minimization problems (see later). It also works quite 
well if  the residuals are caused by uncorrelated Gaussian noise. However in real problems 
this is often not the case. A particularly nasty problem is outliers, which is individual large 
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residuals. A residual of 4 will contribute 16 times more to the misfit, e, than a residual of 1. 
This problem could partly be solved by using the  sum of the absolute residuals as a norm for 
the misfit 
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This is called the L1 norm and is considered more robust when there are large outliers in the 
data. It is not much used in standard location programs since the absolute sign creates 
complications in the equations. This is of course not the case for grid search. Most location 
programs will have some scheme for weighting out large residuals (see later), which partly 
solves the problem. 
 

Once the misfits (e.g. RMS) has been calculated at all grid points, one could assign the 
point with the lowest RMS as the ‘solution’. For well behaved data, this would obviously be 
the case, but with real data, there might be several points, even far apart, with similar RMS 
and the next step is therefore to estimate the probable uncertainties of the solution. The 
simplest way to get an indication of the uncertainty, is to contour the  RMS as a function of  x 
and y (2D case) in the vicinity of the point with the lowest RMS  (Figure 4). 
 
 
Figure 4  
Right: RMS contours (sec) from a grid search  location of an earthquake off western Norway 
(left).The grid size is 2 km. The circle in the middle indicates the point with the lowest RMS 
(1.4 sec). Left: The location of the earthquake and the stations used. Note the elongated 
geometry of the stations. The RMS ellipse from the figure on the left is shown as a small 
ellipse. Latitudes are degrees North and longitudes degrees West. 
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 Clearly, if RMS is growing rapidly when moving away from the minimum, a better 

solution has been obtained than if RMS grows slowly. If RMS  is contoured in the whole 
search area, other minima of similar size might be found indicating not only large errors but a 
serious ambiguity in the solution. 
 
 
Location by iterative methods 
 

Despite increasing computer power, earthquake locations are mainly done by other 
methods than grid search.  These methods are based on linearizing the problem. The first step 
is to make a guess of  the hypocenter and origin time (x0,y0,z0,t0 ).  In its simplest form, this can 
be done by using a location near the station with the first arrival time and using that arrival 
time as t0 . Other methods also exists, see later. In order to linearize the problem, it is now 
assumed that the true hypocenter is close enough to the guessed value so that  residuals at the 
trial hypocenter is a linear function of the correction we have to make in hypocentral distance. 
 

The calculated arrival times at station i, ti
c from the trial location are, as given in (4),   

 ti
c = T(x0,y0,z0,xi,yi,zi) + t0  and the travel time residuals ri are ri  =  ti

o - ti
o .We now assume that 

these residuals are due to the error in the trial solution and the corrections needed to make 
them zero are ∆x, ∆y, ∆z and  ∆t. If the corrections are small, we can calculate the 
corresponding corrections in travel times by approximating the travel time function by a 
Taylor series and only using the first term. The residual can now be written: 
 

ri  =  (∂T/∂xi) * ∆x   +  (∂T/∂yi) * ∆y  +  (∂T/∂zi) * ∆x   +  ∆t  (9) 
 
In matrix form we can write this as 
 

r  =  G *  X         (10) 
 
where r is the residual vector, G the matrix of derivatives (with 1 in the last column 
corresponding to the time correction term) and X is the unknown correction vector in location 
and origin time. 

This is a set of linear equation with 4 unknowns (corrections to hypocenter and origin 
time), and there is one equation for each observed phase time. Normally there would be many 
more equations than unknowns (e.g. 4 stations with 3 phases each would give 12 equations).  
The best fit to equation (9) is usually obtained with standard least squares techniques and the 
corrections to the hypocenter and origin time is obtained. The original trial solution is then 
corrected and this new solution is used as trial solution for the next iteration etc. This method 
was first proposed by Geiger (1912) and is called the Geiger method of earthquake location. 
The iterative process usually converges rapidly unless the data is badly configured or the 
initial guess is very far from the true solutions (see later). However, it also happens  that the 
solution converges to a local minimum and this would be hard to detect in the output unless 
the residuals are very bad.  A test with a grid search program could tell if the minimum is 
local or tests could be made with several start locations. 
 

So far we have only dealt with observations in terms of arrival times. Many 3-
component stations and arrays now routinely report azimuth of arrival φ. It is then possible to 
locate  events with only one station and P and S-times (Figure 1), however, the depth must be 
fixed. If one or several azimuth observations are available, they can be used together with the 
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arrival time observations in the inversion and the additional equations for the azimuth residual 
are 
 

ri
φ  = (∂φ/∂xi) * ∆x   +  (∂φ/∂yi) * ∆y          (11) 

 
 
Equations of this type are then added to (9) or (10). The ∆x and  ∆y  in (11)  are the same as 
for equations (9), however the residuals are in degrees so in order to make an overall RMS, the 
degrees must be ‘converted to seconds’ in terms of scaling. In one program, Hypocenter 
(Lienert and Havskov, 1995), a 10 deg azimuth residual was optionally made equivalent to 1 
sec travel time residual. Using e.g. 20 degrees as equivalent to 1 sec would lower the weight 
of the azimuth observations. 
 Equations (9) are written without discussing whether working with a flat earth or a 
spherical earth. However, the principle is exactly the same. The travel times and derivatives 
are often calculated by interpolating in tables and in principle it is possible to use any earth 
model including  2D and 3D models. However, in practice 1D models are used, since  2D and 
3D models are not known well enough and the computations are very time consuming. For 
local seismology, it is a common practice to specify a 1D crustal model  and calculate arrival 
times for each ray while for global models, interpolation in travel time tables is the most 
common. 
 
 
Example of location in a homogeneous model 
 
 The simplest case for earthquake location is  a homogeneous medium. The travel times 
can be calculated as 
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where v is the velocity. The partial derivatives can be made from (12) and for x, the derivative 
is  
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Similar expressions can be made for y and z.  Table 1 gives an example  of locating an 

earthquake with 10 stations in a model with constant velocity (from Stein, 1991). The stations 
are from 11 to 50 km from the hypocenter. The earthquake has an origin time of 0 seconds at 
the point (0,0,10) km. The starting location is at (3,4,20) km at 2 seconds. The exact travel 
times were calculated using a velocity of 5 km/sec and the iterations were done as indicated 
above.  At the initial guess, the sum of the squared residuals were 92.4 sec2, after the first 
iteration it was reduced to 0.6 sec2 and already at the second iteration, the ‘correct’ solution 
was obtained. This is hardly surprising  since the data had no errors. We shall later see how 
this works in the presence of errors. 
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Table 1  
Inversion of error free data. Hypocenter is the correct location, Start is the start location, and 
the location is shown for the 2 following iterations. All units are km and seconds. 

 
 

 Hypocenter Start 1. iteration 2. iteration 
x 0.0 3.0 -0.5 0.0 
y 0.0 4.0 -0.6 0.0 
z 10.0 20.0 10.1 10.0 
t0 0.0 2.0 0.2 0.0 
e  94.2 0.6 0.0 

RMS  3.1 0.25 0.0 
 
 
 
Location errors 
 

Since earthquakes are located with arrival times that contain observational errors and 
the travel times are calculated assuming we know the model, all hypocenters will have errors. 
Contouring the grid search RMS  (Figure 4)  gives an indication of the uncertainty of the 
epicenter. Likewise it would be possible to make 3D contours to get and indication of the 3D 
uncertainty.  The question is now how to quantify this measure. The RMS of the final solution 
is very often used as a criteria for ‘goodness of fit’. Although it can be an indication, RMS  
depends on the number of stations and does not in itself give any indication of errors and RMS 
is not reported by e.g. PDE and ISC. 

From Figure 4 it is seen that the contours of equal RMS are not circles. We can 
calculate contours within which there is a 67 % probability (or any other desired probability) 
of finding the epicenter (see below). We call this the error ellipse. This is the way hypocenter 
errors normally are represented. It is therefore not sufficient to give one number for the 
hypocenter error since it varies spatially. Standard catalogs from PDE and ISC give the errors 
in latitude, longitude and depth, however, that can also be very misleading unless the error 
ellipse has the minor and major axis NS or EW. In the example in Figure 4, this is not the 
case.. Thus the only proper way to report error is to give the full specification of the error 
ellipsoid. 

Before going into a slightly more formal discussion of errors, let us try to get a feeling 
what elements affects the shape and size of the epicentral error ellipse. If we have no arrival 
time errors, there is no epicenter errors so the magnitude of the error (size of error ellipse) 
must be related to the arrival time uncertainties. If we assume that all arrival time errors are 
equal, only the size and not the shape of the error ellipse can be affected. So what would we 
expect to give the shape of the error ellipse ?. Figure 4 is an example of an elongated network 
with the epicenter off to one side. It is clear that in the NE direction, there is a good control of 
the epicenter since S-P times control the distances in this direction due to the elongation of the 
network. In the NW direction, the control is poor for the same reason. We would therefore 
expect an error ellipse with the major axis NW as observed. Another way of understanding 
why the error is larger in NW than in NE direction, is to look at equation (9). The derivatives 
∂T/∂x will be much smaller then ∂T/∂y so the ∆y-terms will have larger weight then the ∆x-
terms in the equations (strictly speaking derivatives with respect to NW and NE). 
Consequently, errors in arrival times will affect ∆x  more than ∆y. Note, that if azimuth 
observations were available for any of the stations far North or South of the event, this would 
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drastically reduce the error estimate in the EW directions since ∂φ/∂x  is large while ∂φ/∂y is 
nearly zero. 
 Another geometry of the stations would give another shape of the error ellipse.  It is 
thus possible for any network to predict the shape and orientation of the error ellipses, and 
given a arrival error, also the size of the ellipse for any desired epicenter location. This could 
e.g. be used to predict how a change in network configuration would affect earthquake 
locations at a given site.   
 
 In all these discussions, it has been assumed that the errors have Gaussian distribution 
and that there is no systematic errors like clock error. It is also assumed that there is no errors 
from the structure. This is of course not true in real life, however error calculations become 
too difficult if we do not assume a simple error distribution and that all stations have the same 
arrival time error. 
 
 The previous discussion gave a qualitative description of the errors. We will now show  
how to calculate the actual hypocentral errors from the errors in the arrival times and the 
network configuration. The most common approach  to earthquake location is based the least 
squares inversion and a Gaussian distribution of the arrival time errors in which case the 
statistics is well understood and we can use the Chi-Square probability density distribution to 
calculate errors. For a particular earthquake location, χ2 can be calculated as: 
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where σ  is the assumed same standard deviation of any one of the residuals and n is the 
number of observations. We can now look  in standard statistical tables (extract in Table 2) to 
find the expected value of χ2  within a given probability. As it can be seen from the table, 
within 50% probability, χ2 is approximately the number of degrees of freedom (ndf), which in 
our case is n-4. 
 
 
Table 2. 
The percentage points of the χ2   distribution for different number of degrees of freedom (ndf) 
. 

ndf χ2 (95% χ2 (50%) χ2 ( 5%) 
    5     1.1     4.4    11.1 
  10     3.9     9.3    18.3 
  20   10.9   19.3    31.4 
  50   34.8   49.3    67.5 
100   77.9   99.3  124.3 

  
 
If e.g. an event is located with 24 stations (ndf=20),  there is only a 5% chance that χ2  will 
exceed 31.4. The value of χ2 will grow as we move away from the best fitting epicenter and in 
the example above, the contour within which χ2  is less than 31.4 will show the error ellipse 
within which there is 95 % chance of finding the epicenter. In practice, errors are mostly 
reported  within 67 % probability. 
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The errors in the hypocenter and origin time can also formally be defined with the 
variance – covariance matrix VX

2
  of the hypocentral parameters. This matrix is defined as 
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The diagonal elements are variances of the location parameters x,y,z and t0 while the off 
diagonal elements give the coupling between the errors in the different hypocentral 
parameters. For more details, see .e.g. (Stein, 1991). The nice property about VX

2
  is that it is 

simple to calculate: 
 

VX
2

    = V2
  * (GTG)-1        (16) 

 

where V2  is the variance of the arrival times multiplied with the identity matrix  and GT is G 
transposed. The standard deviation of the hypocentral parameters are thus given by the square 
root of the diagonal elements and these are the usual errors reported. So how can we use the 
off diagonal elements ?. Since VX

2
  is a symmetric matrix, it can be represented by a diagonal 

matrix in a coordinate system which is rotated relative the reference system. We now only 
have the errors in the hypocentral parameters, and the error ellipse simply have semi axes σxx, 
σyy,

  and σzz .
   The main interpretation of the off diagonal elements is thus that they define the 

orientation and shape of the error ellipse. A complete definition  therefore requires 6 
elements. Equation (15) also shows, as earlier stated intuitively, that the shape and orientation 
of the error ellipse only depends on the geometry of the network and the crustal structure 
while the standard deviation of the observations is a scale factor. 
 

The critical variable in the error analysis is thus the arrival time variances σ2. This 
value is usually larger than would be expected from timing and picking errors alone, however 
it might vary from case to case. Setting a fixed value for a given data set  could result in 
unrealistic error calculations. Most location programs will therefore estimate σ  from the 
residuals of the best fitting hypocenter: 
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Division by ndf  rather then by n compensates for the improvement in fit resulting from the 
use of  the arrival times from the data.  However, this only partly works and some programs 
allow setting an priori  value which is only used if the number of observations is small. For 
small networks this can be a critical parameter. 
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Example of error calculation 
 
 We can use the previous error free example (Table 1) and add some errors (from Stein 
1991). We add Gaussian errors with a mean of zero and a standard deviation 0.1 sec to the 
arrival times. Now the data are inconsistent and cannot fit exactly. As it can be seen from the 
results in Table 3, the inversion now requires 3 iterations (2 before) before the location do not 
change anymore. The final location is not exactly the location used to generate the arrival 
times and the deviation from the correct solution is 0.2, 0.4 and 2.2 km for x, y and z 
respectively and 0.2 sec for origin time. This gives an indication of the location errors. 
 
Table 3  
Inversion of arrival times with a 0.1 sec standard error. Hypocenter is the correct location, 
Start is the start location, and the location is shown for the 3 following iterations. All units are 
km and seconds. 

 
 Hypocenter Start 1. iteration 2. iteration 3. iteration 

x 0.0 3.0 -0.2 0.2 0.2 
y 0.0 4.0 -0.9 -0.4 -0.4 
z 10.0 20.0 12.2 12.2 12.2 
t0 0.0 2.0 0.0 -0.2 -0.2 
e  93.7 0.33 0.04 0.04 

RMS  3.1 0.25 0.06 0.06 
 
 
 It is now interesting to compare to what is obtained with the formal error calculation. Table 4 
gives the variance – covariance matrix. Taking the square root of the diagonal elements we 
get a standard deviation of x,y,z and t0  of 0.3, 0.3 and 1.1 km and 0.1 secs respectively. This is 
close to the ‘true’ error so the solution is quite acceptable. Also note the RMS is close to the 
standard error. 
 
 
Table 4 
Variance – covariance matrix for the example in Table 3 
 

 x y z t 
x  0.06  0.01  0.01  0.00 
y  0.01  0.08 -0.13  0.01 
z  0.01 -0.13  1.16 -0.08 
t  0.00  0.01 -0.08  0.0 

 
 The variance – covariance matrix shows some interesting features. As seen from 
above, the error is much larger in the depth estimate than in x and y. This clearly reflects that 
the depth is less well constrained then the epicenter which is quite common unless there are 
stations very close to the epicenter. We have for simplicity calculated the standard deviations 
from the diagonal terms, however since the off diagonal terms are not zero, the true errors 
might be larger. In this example it can be shown that the semimajor and semiminor axis have 
lengths of 0.29 and 0.24 km respectively and the semimajor axis trends N22°E so the 
difference from the original diagonal terms is small. 
 The zt term, the covariance of the depth and origin time, is negative, indicating a 
trade-off between the focal depth and the origin time. This is commonly observed in practice 
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and is more prone to happen if only P-phases are used such that  there is no strong limitation 
in distances.  
 
 Error calculation is a fine art, there are endless variations on how it  is done and 
different location programs will usually give different results. 
 
  
Master event technique 
 

The relative location between events within a certain region can often be made with a 
much greater accuracy than the absolute location of any of the events. This is the case when 
velocity variations  outside the local region is the major cause of the travel time residuals  
such that residuals measured at distance stations will be very similar for all of the local events. 
Usually, the events in the local area are relocated relative one specially well located event 
called the master event. It should be clear that the Master Event Technique only can be used 
when the distance to the stations is much larger than the distance between the events. 

Most programs can be used for master event location. The individual station residuals 
for the master event are all assumed to be caused by velocity variations outside the region. By 
using these station residuals as station corrections, location of the remaining events will be 
made relative to the master event since all relative changes in arrival times are now  entirely 
due to changes in location within the local region. It is obvious that only stations and phases 
for which observations are available for the master event can be used for the remaining 
events. Ideally, the same stations and phases should be used for all events. 
 
 
Joint hypocenter location 
 
 In the Master Event Technique, it was assumed that true structure dependent residuals 
could be obtained absolute correct from the master event, however other errors could be 
present in the readings for the master event. A better way is to determine the most accurate 
station residuals  using the whole local data set. This is what Joint Hypocenter Determination 
(JHD) is about. Instead of determining one hypocenter and origin time, we will jointly 
determine m hypocenters and origin times and n station corrections. This is done by adding 
the stations residuals ∆ti

s  to equation 9 and writing  the equations for all  m earthquakes 
(index j): 
 

rij  =  (∂T/∂xij) * ∆x   +  (∂T/∂yij) * ∆y  +  (∂T/∂zij) * ∆x +  ∆ti
s  +  ∆tj (18) 

 
The method of JHD was first proposed by Douglas (1967). Since the matrix G is now much 
larger than the 4 x 4 matrix for the a single event location, efficient inversion schemes must 
be used. If  we e.g. use 20 stations with 2 phases each  for 10 events, there will be 20 *10 *2 = 
400 equations and  60 unknowns ( 10 hypocenters and origin times, and 20 station residuals). 
 
 The relative locations obtained by Master Event Technique and JHD are usually much 
better than the individual relative locations. However, only if we have the absolute location of 
one of the local events (like a known explosion) will we be able to convert the relative 
locations to absolute locations while for JHD, absolute locations are obtained.  Accurate 
relative locations are useful to study e.g. the structure of a subduction zone or the geometry of 
aftershocks which might indicate the orientation of the fault. Figure 5 shows an example of 
using JHD. 
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Figure 5 
 
Comparison of earthquake locations using the normal procedure at ISC (left) and JHD 
relocations (right). The events are located in the Kurile subduction zone along the rupture 
zones of large thrust events in 1963 and 1958. The vertical cross sections shown traverse the 
thrust zone from left to right. Note that the JHD solutions reduce scatter and makes it possible 
to define a dipping plane. (From Swartz et al,1989). 
 

 
 
 
 
 
 
 
 
 
Practical consideration in earthquake locations 
 
 This section is intended to give some practical hints on earthquake location. The 
section does not refer to any particular location program, but most of the parameters discussed 
can be used with the Hypocenter program (Lienert and Havskov, 19945. 
 
 
Phases 
 

The most unambiguous phase to pick is usually P and P is the main phase used in most 
teleseismic locations. For local earthquakes, usually S-phases are also used. Using phases 
with different velocities has the effect of constraining the distances and there is then little 
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trade off between depth and origin time or epicenter location and origin time if the epicenter 
is outside the network. In general, it is thus an advantage to use as many different phases as 
possible under the assumption that they are correctly identified. One very wrong phase can  
throw off an otherwise well constrained solution. 
 

The majority of location programs for local earthquakes only use first arrivals (e.g. 
HYPO71). This is ok is many cases. In some distance ranges, Pn is the first arrival, and it  
usually has a small amplitude. This means that the corresponding Sn phase automatically used 
by the program, might have a very small amplitude and the phase read is Sg or Lg. Since the 
program automatically assumes a first arrival, a wrong travel time curve is used for the 
observed phase, resulting in a systematic location error. This error is amplified by the fact that 
the S-phase, due to its low velocity, has a larger influence on the location than the P-phase. It 
is therefore important to use location programs where all crustal phases can be specified. 
 
 
Starting location 
 

Iterative location programs commonly start at a point near the station recording the 
first arrival. This is good enough for most cases, particularly when the station coverage is 
good and the epicenter is near or within the network. However, this can also lead to problems 
when using least squares techniques, which converge slowly or sometimes not at all for events 
outside the limits of a regional network (Buland, 1976). Another possibility is that the 
solution converges to a local minima which might be far from the correct solution. For small 
elongated networks, two potential solutions may exist at equal distance from the long axis. A 
starting location close to the first arrival station can then bias the final solution to the 
corresponding side of such a network. Although this bias usually is on the correct side, any 
systematic error in the first-arrival station’s time can have a disproportionately large effect on 
the final location. Thus in many cases, it is desirable to use a better start location than the 
nearest station. There are several possibilities: 
 

a) In many cases the analyst knows by experience the approximate location and can then 
manually give a start location. Most programs have this option. 

b) Similar phases at different stations can be used to determine the apparent velocity and 
azimuth of a plane wave using linear regression on the arrival times with respect to the 
horizontal station coordinates. With the apparent velocity and/or S-P times, an 
estimate of start location can be made. This method is particularly useful when 
locating events fart away from the network (regionally or globally). 

c) Azimuth information is frequently available from 3 component stations or seismic 
arrays and can be used as under b, 

d) S-P and the circle method can be used with pairs of stations to get an initial location. 
 
  

The starting depth is usually a fixed parameter and set to the most likely depth for the 
region. For local earthquakes that is usually in the range 10-20 km while for distant events it 
is often set to 33 km. If depth phases like e.g. pP are available for distant events, these phases 
can be used to set or fix the depth, see next section. 
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Hypocentral depth 
 
| The hypocentral depth is the most difficult parameter to determine due to the fact that 
the travel time derivative with respect to depth changes very slowly as a function of depth 
(see Figure 6) unless the station is  close to the epicenter. In other words, the depth can be 
moved up and down without changing the travel time. Figure 6 shows a shallow (ray 1) and a 
deeper event (ray 2). It is clear that the travel time derivatives with respect to depth is nearly 
zero for ray 1 and but not for ray 2. In this example, it would thus be possible to get an 
accurate depth estimate for the deep event but not for the shallow earthquake. Unfortunately, 
most rays are like ray 1 and  locations are therefore often made with a fixed ‘normal’ start 
depth and only after the a reliable epicenter is obtained will the  program try to iterate for the 
depth. Another possibility is to locate the event with several starting depths and use the depth 
that gives the best fit to the data. Although one depth will give a best fit to the data, the depth 
estimate might still be very uncertain and the error estimate must be checked.  

 
Figure 6 
The depth – distance trade off in determination of focal depth. 

 

 
 
For teleseismic events, the best way to improve depth determination is to include 

readings from the so called  depth phases pP, sP. The differential time pP-P is quite constant  
at a range of epicentral distance for a given depth so the depth can be determined nearly 
independently of the epicenter. Another way of getting a reliable depth estimate for 
teleseismic locations is to have both near and far stations available, however this is 
unfortunately only the case for a few events. 
 

For local  events, a rule of thumb is that stations should be no further away than 2 
times the depth in order to get a reliable estimate (Figure 6). This is very often not possible, 
particularly for regional events. At distance larger than 2 * depth, the depth derivative change 
very little with depth if the first arriving phase is Pg, but at distances where Pb or Pn arrives, 
there is again a sensitivity to depth due to the steeply down going rays of Pb or Pn (Figure 7). 
So if stations are available at distances with both direct and refracted rays are first arrivals, 
reasonably reliable solutions might be obtained. An even better solution is when both Pg and 
Pn are available at the same station and the location capability could be similar  to using P and 
pP for teleseismic events. The problem is that it might be difficult to identify secondary P-
phases and a wrong identification might make matters worse. 
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Figure 7 
Example of both Pg and Pn. Note the steep incidence angle for Pn as compared to Pg. 

 
  

The depth estimate using a layered model remains problematic even with a mix of 
phases. Checking catalogs with local earthquakes, it will often be noted that there is a 
clustering of hypocenters at layer boundaries. This is caused by the discontinuities in the  
travel time curves of the direct phase Pg as a function of depth at layer boundaries, see Figure 
8 for an example. The  Pg travel time suddenly decreases when the hypocenter crosses a 
boundary (here Moho) since a larger part of the ray suddenly is in a higher velocity layer, 
while the Pn travel time continuously decrease as the depth increases. This gives rise to the 
discontinuities in the Pg –Pn travel time curve. So one Pn-Pg travel time is not enough to 
ensure a reliable depth estimate, several such phase arrivals must be available. 
 
Figure 8 
Ray paths of Pg phases as they cross the  Conrad discontinuety (right). On the left is sketched 
the travel time curve of Pg-Pn as a function of depth.  
 

 
 

Even when several Pg and Pn phases are available, depth estimates still remains a 
problems of regional distances due to the uncertainty in the crustal models. Since the depth 
estimates are critically dependent on the accurate calculation of Pg and Pn travel times, small 
uncertainties in the model can quickly throw off the depth estimate. 

Many location programs give the RMS of the travel time residuals in a grid around the 
calculated hypocenter. This, in addition to the error estimates, gives an idea about the 
accuracy and a local minimum might be found in this way. A more direct way of estimating 
the quality of the depth estimate is to calculate  the RMS as a function of depth in order to 
check if a local minimum has been reached.  
 
 
Outliers 
 
 

The largest residuals have disproportionally large influence on the fit of the arrival 
times due to the commonly use least squares fit. Most location programs will have some kind 
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residual weighting scheme in which  observations where large residuals are given lower or 
even no weight. Bisquare weighing is often used for teleseismic events (Anderson, 1982). The 
residual weighting works very well if the residuals are not extreme since the residual 
weighting can only be used after a few iterations so that the residuals are close the  final  ones. 
Individual large residuals can often lead to completely wrong solutions, even when 90 % of 
the data is good and residual weighting will not help in these cases. Some programs will try to 
scan the data for gross errors (like minute errors) before starting the iterative procedure. If an 
event has large residuals, try to look for obvious outliers. A Wadati diagram can often help in 
spotting bad readings for local earthquakes, see Figure 3. 
 
 
Weighting 
 

The arrival time observations will by default always have different weight in the 
inversion. A simple case is that S-waves will have larger weight than P-waves due to the 
lower velocity. An extreme case is T-waves (guided waves in the ocean), which with their low 
velocity (1.5 km/sec) completely can dominate the solution. Considering, that the accuracy of 
the picks is probably is best for the P-waves, it is natural, that the P-arrivals have more 
importance than S-arrivals in the location. However, the default in most location programs is 
to leave the original weights unless the user actively changes the weight. It is normally 
possible to apriori  give all S-phases a low weight and in addition, all phases can be given 
individual weights, including being weighted out. 

When working with local earthquakes, the nearest stations will usually provide the 
most accurate information due to the clarity of the phases. In addition, uncertainty in the local 
model has less influence on the results at short distances than at larger distances, this is 
particularly true for depth. It is therefore desirable to put more weight on data from near 
stations than distance stations and this is usually done by using a distance weighting function 
of 
 
 

             
nearfar

far
d xx

x
w

−
∆−

=         (19) 

 
where ∆ is the epicentral distance, xnear  is the distance to which full weight is used and xfar is 
the distance where weight is zero.  The constants xnear and xfar  are adjusted to fit the size of 
the network and xnear should be about the diameter of the network and xfar about twice xnear . 
For a dense network, xnear and xfar  might be made even smaller to more accurate solutions. 
Distance weighting is not used for teleseismic locations since the global travel time tables 
have no particular distance bias and clarity of phases is not distance dependent. 
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